A Census of Small Latin Hypercubes

نویسندگان

  • Brendan D. McKay
  • Ian M. Wanless
چکیده

We count all latin cubes of order n ≤ 6 and latin hypercubes of order n ≤ 5 and dimension d ≤ 5. We classify these (hyper)cubes into isotopy classes and paratopy classes (main classes). For the same values of n and d we classify all d-ary quasigroups of order n into isomorphism classes and also count them according to the number of identity elements they possess (meaning we have counted the d-ary loops). We also give an exact formula for the number of (isomorphism classes of) d-ary quasigroups of order 3 for every d. Then we give a number of constructions for d-ary quasigroups with a specific number of identity elements. In the process, we prove that no 3-ary loop of order n can have exactly n−1 identity elements (but no such result holds in dimensions other than 3). Finally, we give some new examples of latin cuboids which cannot be extended to latin cubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Construction for Space-filling Latin Hypercubes

Abstract: We propose a general method for constructing Latin hypercubes of flexible run sizes for computer experiments. The method makes use of arrays with a special structure and Latin hypercubes. By using different such arrays and Latin hypercubes, the proposed method produces various types of Latin hypercubes including orthogonal and nearly orthogonal Latin hypercubes, sliced Latin hypercube...

متن کامل

Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes

This article presents an algorithm for constructing orthogonal Latin hypercubes, given a fixed sample size, in more dimensions than previous approaches. In addition, we detail a method that dramatically improves the space-filling properties of the resultant Latin hypercubes at the expense of inducing small correlations between the columns in the design matrix. Although the designs are applicabl...

متن کامل

Construction of Orthogonal Nearly Latin Hypercubes

Orthogonal Latin hypercubes (OLHs) are available for only a limited collection of run sizes. This paper presents a simple algorithm for constructing orthogonal designs that are nearly Latin hypercubes. The algorithm is based on the approach developed by Steinberg and Lin for OLH designs and can generate designs for all run sizes for which a Plackett-Burman design exists. The designs have good u...

متن کامل

Latin k-hypercubes

We study k dimensional Latin hypercubes of order n. We describe the automorphism groups of the hypercubes and define the parity of a hypercube and relate the parity with the determinant of a permutation hypercube. We determine the parity in the orbits of the automorphism group. Based on this definition of parity we make a conjecture similar to the Alon-Tarsi conjecture. We define an orthogonali...

متن کامل

On the Structure of Orthogonal Latin Hypercubes

The structure of orthogonal Latin hypercubes(OLH) is established in vector space over GF(2). An upper bound on the number of columns of an OLH is given. An OLH whose number of columns reaches the upper bound are found for m = 3 and m = 4, while the cases for m 5 are still unknown.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008